Commutative semigroups which are almost finite
نویسندگان
چکیده
منابع مشابه
Commutative cancellative semigroups of finite rank
The rank of a commutative cancellative semigroup S is the cardinality of a maximal independent subset of S. Commutative cancellative semigroups of finite rank are subarchimedean and thus admit a Tamura-like representation. We characterize these semigroups in several ways and provide structure theorems in terms of a construction akin to the one devised by T. Tamura for N-semigroups.
متن کاملOn Transformation Semigroups Which Are Bq-semigroups
A semigroup whose bi-ideals and quasi-ideals coincide is called a -semigroup. The full transformation semigroup on a set X and the semigroup of all linear transformations of a vector space V over a field F into itself are denoted, respectively, by T(X) and LF(V). It is known that every regular semigroup is a -semigroup. Then both T(X) and LF(V) are -semigroups. In 1966, Magill introduced and st...
متن کاملOn transformation semigroups which are ℬ-semigroups
A semigroup whose bi-ideals and quasi-ideals coincide is called a -semigroup. The full transformation semigroup on a set X and the semigroup of all linear transformations of a vector space V over a field F into itself are denoted, respectively, by T(X) and LF(V). It is known that every regular semigroup is a -semigroup. Then both T(X) and LF(V) are -semigroups. In 1966, Magill introduced and st...
متن کاملWhich elements of a finite group are non-vanishing?
Let $G$ be a finite group. An element $gin G$ is called non-vanishing, if for every irreducible complex character $chi$ of $G$, $chi(g)neq 0$. The bi-Cayley graph ${rm BCay}(G,T)$ of $G$ with respect to a subset $Tsubseteq G$, is an undirected graph with vertex set $Gtimes{1,2}$ and edge set ${{(x,1),(tx,2)}mid xin G, tin T}$. Let ${rm nv}(G)$ be the set of all non-vanishi...
متن کاملIsomorphisms and strong finite projec- tive classes of commutative semigroups
In “Sverdlovsk notebook” (Sverdlovsk, 1969), I proposed a question: Are any too first-order equivalent finitely generated commutative semigroups isomorphic? In 1970, B.I.Zilber answered the question negatively. A question arises: In what language, any equivalent over the language finitely generated commutative semigroups are isomorphic? In the note, we propose such a language. Moreover, we prov...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Pacific Journal of Mathematics
سال: 1968
ISSN: 0030-8730,0030-8730
DOI: 10.2140/pjm.1968.27.533